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ABSTRACT 

Precise  Time and Time Interval (PTTI) is an  e lect ronic  
specialty which originated with the  availability of high 
performance oscillators and clocks. The widespread 
application o f  PTTI in modern electronic systems is due t o  
t h e  close connection of t ime  measurement with distance 
measurement,  the  possiblity of independent coordination of 
remote  actions over extended periods of time, and be t t e r  
utilization of the  t ime  and spectrum domain. The g rea t  
precision of modern clocks must be purchased, however, not  
only with dollars but also with g rea te r  sophistication of the  
necessary support. 

Autamation can overcome some, but not al l  of this ex t ra  
cost. Moreover, if indeed we depend on our clocks more than 
before, then we also have t o  assure t h a t  system t i m e  can be 11 
kept with t h e  g rea tes t  reliability. This also c r e a t e s  new and 
unusual requirements fo r  a truly uninterrupted service. The 
basic concepts of PTTI a re  discussed. 1 

BACKGROUND 

Electronic t ime  measurement found i t s  f i rs t  large scale  application in conjunction with 
t h e  developrnent of RADAR and electronic navigation during World War 11. Volume 20 
(Electronic Time Measurements) of the  MIT Radiation Laboratory Series gives an  account 
of t h e  techniques with which timing was implemented in a variety of systems. The 
quar tz  crys ta l  was in wide use, albeit ,  mostly as a t i m e  base for  shor t  t i m e  measure- 
ments. The measurement o f  longer periods with g r e a t  accuracy was still  t h e  undisputed 
domain of the  astronomer and it remained so until industrially produced a tomic  clocks 
becatne available. The f i rs t  modest  s teps  in the  application of  these  new devices fo r  t h e  
salution of problems in t h e  field s t a r t ed  around 1958 with the  introduction o f  a tomic  
frequency control  in exper iments  involving VLF and the,  a t  t h a t  t ime  experimental ,  
Omega Navigation System (Reder e t  al. 1960). Ten years la ter ,  the  transistor had 
completely replaced electronic tubes, and t h e  a tomic  clocks had taken essentially t h e  
form which is s t i l l  familiar  t o  us. Most VLF t ransmit ters  and t h e  LORAN transmit ters  
were  driven from Cesium frequency standards and Naval Research Laboratory (NRL) had 
plans to  put a tomic  clocks into satell i tes.  Many network television s ta t ions  were 
procuring Rubidium frequency standards because of t h e  reduced co- and cross-channel 

C in terference using a tomic  frequency control. 

The next major s t e p  c a m e  with the  merger of digital electronics with high-precision 
timing. Digital techniques a r e  naturally suited for the  full exploitation of t h e  benefits  
which become available t o  t h e  sys tem designer with the  application of  precise timing and 
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I 

frequency control. f iming and/or frequency measurement is principally counting which 
is  also t h e  essence of t h e  digital technique. But a t  th is  moment one cannot possibly 
foresee  t h e  full extent  of the  future  massive use of PTTI throughout mili tary and civilian 
applications. Indeed we can assume t h a t  no electronic sys tem with extended spatial  
coverage will come into existence without the  application of precision timing in one way 
o r  another. All of these  developments find thei r  documentation in t h e  proceedings of t h e  
regular PTTI conferences a s  listed in Table 1. 

I 

What is PTTI? 

(System Applications) 

Precise  Time and Time Interval (PTTT) in our  usage s tands  simply f o r  t h e  application of 
precise timing and frequency control. Other  designations for  the  various applications 
include the  concept  of "Time Ordered Systems" o r  simply T/F systems and technology. 
However, we must remember t h a t  the re  a r e  really several  d i f ferent  s tages  t o  be distin- 
guished, al l  af which re fe r  t o  the  enhanced importance of precise t i m e  and frequency in 
t h e  operation of t h e  system, but with very di f ferent  implications fo r  thei r  operational 
philosophy: 

1. The subsystems require a t ight  re la t ive  frequency tolerance for  t h e  reference 
standards in use. There is no phase tolerance specified, o r  t is a very loose tolerance. 
The frequency tolerance is generally smaller than I x lO-'. Precision quar tz  crys ta l  
oscillators a r e  a necessary means  fo r  achieving such narrow tolerances and t h e  sys tem 
generally will allow some means of internal  reference distribution such a s  pilot tones, 
e tc .  If t h e  use of such references  is continuously possible, o r  nearly so, then we should 
not really speak of a genuine PTTI system. Our television with i t s  color subcarrier wauld 
fall  into this category. The quar tz  crystal  oscillators used in t h e  receivers can be very 
inexpensive because they a r e  re-calibrated during each frame. 

2. The subsystems require highly accura te  frequency generators. Tha t  would mean t h a t  
in contras t  t o  group one, the  references  must m e e t  the  specification a priori, i.e., 
without calibration a f t e r  turn  on. This requirement entails  t h e  use of a tomic frequency 
standards,  and very often,  standards without long-term drift.  (Rubidium clocks usually 
have such a small  long-term drift). 

3. Synchronized systems in t h e  wide sense, i.e., they operate  in re la t ive  synchronism 
but without accounting for propagation delays, o r  f r a m e  ambiguity resolution. A syn- 
chronization tolerance is specified together with a re-synchronization t i m e  interval. The 
b e t t e r  t h e  clocks used, t h e  longer can be this re-synchronization interval. 

4. Synchronized systems in the  narrow sense, i.e., with complete  accounting fo r  t h e  
delays and with "frame ambiguity" resolution. Tha t  means t h a t  t h e  fundamental  period 
in t h e  sys tem is very long, with the  individual f rames o r  repet i t ion periods not being 
equivalent. But t h e  sys tem is on a purely arbitrary reference time. 

5. Coordinated systems, i.e., synchronized systems in t h e  narrow sense which, instead 
of being on an  arbitrary epoch, a r e  referenced t o  Coordinated Universal Time. 
Surprisingly, this does not necessarily mean t h a t  such systems opera te  from an  external  
t ime  reference.  Their sys tem t ime  reference is only coordinated t o  public t ime  but 
atherwise opera tes  completely independently. This point is frequently misunderstood, 
which then develops into resistance t o  t h e  idea of coordination. This mental  block is 
then lastly the  reason why so many designers do not admit  t h a t  thei r  system is really a 
t imed system which can and should benefit  f rom coordination because it costs  so little. 



Network synchronization involves usually 1/3. The step f r o m  113 t o  1!4 is expensive, 
whereas the last  step is the easiest, least expensive and most beneficial. This is so 
because one always f inds tha t  there are interfaces w i t h  other systems, even if, as usual 
during the system design, one does no t  expect t o  have any. On the other hand, by 
becoming a member o f  a community o f  coordinated systems, the f u l l  synergistic benefits 
of redundancy, greater accuracy, and much greater operational rel iabi l i ty,  can a l l  be 
obtained a t  hardly any incremental  cost. 

The most impor tant  benef i t  comes about, therefore, f r o m  taking the step f r o m  !I4 t o  115 
r i gh t  f r o m  the beginning; an operational t ime  and frequency discipline exists then as a 
mat te r  o f  course and enters in to  a l l  design questions, logist ics and training matters as an 
in tegra l  pa r t  instead of having t o  be added a t  great cast only when one is inevi tably 
forced in to  it. I say "inevitably" because I saw i t  happen t o  every system I remember 
which s tar ted t o  use precision clocks i n  one way o r  another. No, it can be demonstrated 
tha t  once step f l2  has been taken, the rest  is only a question o f  t ime  (in more than one 
sense!). The simple r e a y n  is tha t  one cannot real ly measure or maintain a frequency 
rel iably w i th in  1 x 10- without  making t ime  measurements. Without accounting fo r  
accumulated t ime  differences no accounting o f  short  t ime  frequency variations w i l l  be 
possiblc. Therefore, my  recommendation is that, i f  one is rea l ly  serious about a 
speci f icat ion o f  frequency t o  t ha t  accuracy, tha t  person should s ta r t  taking t ime  
measurements in to  account alsa. And because one has then entered the domain o f  high 
precision, a host o f  unexpected addit ional points have to  be considered also. It is bet te r  
t o  have these questions brought in to  the open than t o  remain unaware o f  them un t i l  
operational problems come up. Actua l ly  one can postpone most o f  t ha t  and delegate i t  t o  
a " t ime manager", bu t  such a responsibi l i ty must be established i n  every t ime-ordered 
system. 

I n  navigation systems o r  systems which determine position, the i r  ro le  as a PTT I  system is 
much more obvious f r om the beginning. The basis o f  operation is the simple f ac t  t ha t  
l i gh t  o r  the electro-magnetic wave travels a t  a speed o f  300m/us. This explains easily 
t ha t  the required precision o f  t ime  measurement (and t imekeeping if the clocks must be 
free running over some t ime)  must  be cornmensurate w i t h  the required accuracy o f  
posit ion determination. In ear l ier  t imes this independent t imekeeping was o f ten  
circumvented by making re la t ive measurements o r  by the use o f  the Doppler e f f ec t  o f  
moving beacons. Bu t  today the t rend is generally t o  re ly  more on the clocks because o f  
the great operational benefits. This has been the reason why, e.g., the LORAN stations 
have been equipped w i t h  cesium clocks as a replacement f o r  the rubidium standards 
(which i n  t u rn  had replaced the crysta l  standards i n  earl ier times). Similarly, i n  the 
modern Global Postioning System (GPS), cesium clocks are used i n  the satel l i tes vs. 
quartz crysta l  clocks i n  the ear l ier  Transit system which re l ied  on more extensive ground 
data processing and less on the satel l i te clocks f o r  which no pr ior  experience existed at  
the time. 

To sum up: PTT I  designates an electronic specialty concerned w i t h  the use o f  precise 
t ime  (10ms tolerance o r  less) and/or precise t ime  in te rva l  (wi th in  1 x i n  electronic 
systems. The f ie ld  includes basic PTTI  policy questions; c lock technology, including 
questions o f  rel iabi l i ty;  t ime  distr ibution, including the  t reatment  o f  propagation delay; 
re la t iv is t ic  corrections f o r  highest accuracy o f  t ime transfer; and clock 'lnoise'l, i.e., 
stat ist ics o f  clock performance. 

Clocks and Their  Performance 

A n  overview of the ma in  types o f  precision clocks is given i n  Table 2. Two ma in  points 
must be considered: 



a) I n  general one gets what one pays for. However, this also means one should no t  
specify more than needed because o f  the excess cost o f  purchase. And even 
more important, and more costly i n  the long run, is the addit ional complexi ty 
and delicacy o f  clocks which are selected solely on  the basis o f  the i r  s tab i l i ty  
because one wanted t o  obtain "the best". The simpler a device, the more 
rel iable it w i l l  be and the less support it w i l l  require. 

b) Performance is not  a one parameter quantity. Clocks d i f fe r  i n  respect t o  the i r  
s tab i l i ty  over short intervals (which a f fec ts  spectrum purity, j i t ter ,  etc.) vs. 
long t ime  s tab i l i ty  ( important f o r  t i m e  keeping). I n  addition, the i r  sensi t iv i ty t o  
the environment must be kept  i n  mind. Shock and vibrat ion are bad f o r  a l l  
clocks, bu t  s ta t i c  accelerat ion is especially hard t o  overcome fo r  quartz crysta l  
clocks. Magnetic f ields are a problem f o r  a l l  presently available a tomic 

- clocks. Temperature variations are also not  conducive t o  precision measure- 
ments o f  any kind. We must  remember t ha t  clocks are very high-technology 
i tems and require some kind o f  consideration even though mi l i ta r i zed  and space- 
qual i f ied clocks have been designed t o  withstand qui te a b i t  o f  environmental 
stress. 

System Tolerances 

Requirements f o r  t i m e  o r  precision frequency are usually given in a ra ther  s impl ist ic 
manner, such as "must stay w i th in  1 microsecond (us)". This is insuff ic ient because the 
durat ion dur ing which this performance must be available is as impor tant  as is  the t im ing  
tolerance. Moreover, th is number, whatever i t  is, is no t  to  be confused w i t h  the 
necessary measurement resolution. To assure, e.g., that  a c lock stay w i th in  1 us over 100 
days, one w i l l  have t o  set i t s  rate, o r  cal ibrate it in i t ia l ly,  t o  be t te r  than 10 ns per day. Y 

If m y  measurement resolution is only 10 ns then this w i l l  take me  a whole day t o  accom- 
plish. As a general rule, th is  measurement resolution must be as high as feasible. Any 
a t tempt  a t  saving on this i t e m  is very cost ly i n  the long run. 

Clock Sets 

Fo r  uninterrupted operation it is indispensable t o  have spare clocks. A single spare clock 
a t  a stat ion can, however, create a smal l  problem: which one is r igh t?  This is exact ly  the 
point  where the great advantage o f  operating i n  a coordinated system becomes obvious. 
A l l  the  operator has t o  do is t o  make a t ime  comparison w i t h  any other coordinated 
system t o  resolve his doubts, because w i t h  three clocks one can usually determine which 
one shows the i r regular i ty.  Wi th  more clacks available one may also want t o  use them 
f o r  more than just as a reserve. This raises then the question of  algorithms f o r  the 
computat ion of a "best" t i m e  scale. I n  the simplest but  also most e f fect ive case one can 
simply p lo t  a l l  t ime  differences. This w i l l  al low the recognit ion o f  r a te  changes o f  
individual clocks, provided t ha t  these changes do no t  a l l  occur a t  the  same t ime  (Hafele 
and Keat ing 1970). 

Rel iab i l i ty  

CCIR Report  898, Performance and Rel iab i l i ty  o f  Reference Clocks, gives an up-to-date 
and very comprehensive discussion o f  the presently available re l iab i l i ty  data on atamic 
clocks. Br ie f l y  stated, the fai lure ra te  funct ion fol lows the usual bathtub shape. A f t e r  a 
pronounced in fan t  mor ta l i ty ,  the fa i lure ra te  stays low up t o  about 3 years when end-of- 
l i f e  phenomena seem t o  begin. A pract ica l  aspect is the d i f f i cu l t y  o f  measuring mean 
t i m e  between fai lure (MTBF) f o r  devices which are, a f t e r  all, and our complaints not -  
withstanding, very reliable. Fo r  an exact measure one would have t o  wa i t  un t i l  a l l  o f  the 



t e s t  clocks in a given s e t  have failed. A more practical  s ta t is t ic ,  in such cases,  is t h e  
mean life which is known a f t e r  one-half of t h e  clocks have failed. The full story,  
however, is only given by the  fai lure r a t e  as a function of operating time. Lastly, we 
really have no t  had consistent samples available in t h e  past. Every change in a pro- 
ductian o r  a supplier produces entirely different results. A major reason for  the  
difficulty is t h e  incredibly high demand which is plac on t h e  electronics of an a tomic 
clock. For t h e  achievement of a stabil i ty of 1 x 10-" per day, which is typical fo r  an  
industrially manufactured cesium clock, t h e  electronics is called upon t o  stabil ize t h e  
driving quar tz  crystal  oscillator t o  within 2 x of the  microwave bandwidth o f  the 
a tomic  beam tube. Phase lock loops a t  5MHz must be stabilized t o  within fractions of 
milliradians and phase de tec to r  balances must remain within 1 mV over years to  prevent 
long-time dr i f t  of t h e  oscillator. Considering these  requirements i t  becomes c lear  t h a t  
mast  of the  modules in such a device including the  power supplies must be designed for 
t h e  specif ic  application and cannot be taken ready made and tes ted f rom a vendor. In 
one word, a tomic clocks until now have not been mass produced but have remained 
typical  high-technology i tems, manufactured in shor t  individual runs. If anything changes 
in t h e  manufacturing set-up, then we must expec t  also a change in the  samples produced. 

Clock Sta t is t ics  (Clock Noise) 

The concept  of the  a tomic  clock consists of an a tomic  package, functioning a s  a micro- 
wave discriminator, t h e  output of which is used to  control t h e  driving crystal  oscillator. 
The discriminator is used here a s  a passive device which has  an unavoidable amount of 
noise in t h e  output (Hydrogen Masers a r e  a notable exception because here  t h e  atornic 
package itself produces a signal coming frorn the  hydrogen atoms). This noise now 
modulates t h e  frequency of t h e  oscillator with random, white (uncorrelated) noise. 
Figure 1 shows the  t i m e  e r ro r  of such a clock. It is a random walk coming f rom the  
integration of t h e  servo noise. This is t h e  best  passible case because any persistence of 
disturbances over some t ime  (i.e., if the  noise is correlated) will produce much larger 
t i m e  errors  than this random walk. Now t h e  causes for  such persistent  disturbances a r e  
sys temat ic  variations in the  operating conditions, coming part ly frorn relaxation e f f e c t s  
in t h e  s t ructure ,  t h e  magnetic materials ,  o r  t h e  electronics, and partly they a r e  environ- 
mentally induced. Older sys tems could be expected t o  have substantially relaxed and 
should, therefore ,  show a b e t t e r  stabil i ty than new systems. However, t h e  signal-to- 
noise ra t io  will generally be poorer and this seems t o  cause the  generally poorer overall 
stabil i ty of old clocks. 

The internal  relaxations a r e  t o  a large degree  foreseen by the  designer who t r ied  t o  
compensate fo r  such effects .  Similarly, external  e f f e c t s  such a s  power line f luctuations 
a r e  effect ively  regulated ou t  a t  t h e  expense, however, of secondary e f f e c t s  (changes in 
t h e  internal  temperature  distribution) t h a t  will show up delayed, which in turn  will induce 
compensatory processes. For a l l  these reasons the  clock system does not really have a 
s table  equilibrium and t h a t  produces what  is known as "flicker noiset1 in t h e  output  
frequency for  long-time intervals. This is, however, st i l l  a simplification because the re  
are di f ferent  noise types  depending on t h e  t ime  interval  considered. These details  
become really important f o r  the  prediction of the  clock errors  t o  be expected.  

The "bottom line" here  is t h a t  t h e  clock aperator  must do his/her best  to  protect  t h e  
clocks f rom all  disturbances a s  much a s  humanly possible, and it means also t h a t  people 
should be kept a s  f a r  away a s  possible! 



Time Access (Time Distribution) 

Table 3 gives an overall  picture of the  main PTTI access tools. If the  present t rend 
continues then t h e  si tuation will become about a s  follows: 

In i t s  a r e a  of coverage LORAN C will remain a most reliable and simple precision source 
fo r  PTTI. 

For  very high-precision requirements and f o r  t rue  global access, the  Global Positioning 
System (GPS) is t h e  choice. For non-qualified users t h e r e  will likely be a degradation of 
precision in t h e  future ,  but i t  remains t o  be seen how much it will actually a f f e c t  a user 
who can afford averaging his readings aver  a day. A t  this t ime  a relatively simple, single 
frequency receiver can provide a smoothed daily precision of be t t e r  than +10 ns any- 
where. With t h e  "common view" technique even be t t e r  results have been reported. The 
potential  fo r  qualified users of the  full sys tem will be a t  leas t  a s  good. 

F a r  highest requirements, point-to-point sa te l l i te  links allow timing with uncertainties of 4 

less than one  ns, albeit  a t  high cost. 

For  modest requirements (50 us) in t h e  Americas, the  GOES sate l l i tes  allow inexpensive, 
fully au tomat ic  timing. 

For  modest  requirements anywhere, with very high reliability, t h e  Transit  sa te l l i te  
sys tem is an excellent  choice. (More expensive than t h e  GOES satellite). 

For lowest cost ,  leas t  precision but widest coverage, the  standard HF t i m e  signals and 
even t h e  telephone a r e  available. Q 

In a l l  cases  where uncertainties o f  less than a few hundred nanoseconds a r e  required, 
relat ivity theory must also be consulted for  t h e  computation of corrections t o  t h e  ac tua l  
measurements of distant clocks. This is a f a c t  of l ife today and not ,  a s  i t  used t o  be, a n  
abstruse question of anly theoret ica l  concern. Time is, in principle, a local ordering 
parameter.  For distant  measurements the  concept  of simultaneity must be refined which 
leads t a  t h e  corrections just mentioned. 

CONCLUSIONS 

There a r e  a number af  general  principles which should guide t h e  confused mind in this 
jungle of possible choices. One c a n  recommend t h e  CCIR Study Group VII documentation 
(particularly Reports  363-5, 580-1 and 364-4) a s  a guide. The only disadvantage is t h e  
high price of t h e  "green book" which is sold by t h e  International Telecommunications 
Union (ITU) in Geneva (3). Less expensive and closer t o  home a r e  these  PTTI conferences 
which have t h e  additional advantage t h a t  personal con tac t  with experienced colleagues 1 

can be utilized t o  the  fullest  extent .  Nothing beats  experience! Table 4 suggests the  use 
of a continuing service  which is available fo r  t h e  operational PTTI user. The new DoD 
Directive 5160 of June  14, 1985 specifically di rects  the  Observatory t o  establish a 
"Repositorytt of PTTI information f o r  which this service  is t o  be t h e  core. We will 
apprecia te  receiving your requirements and suggestions. 
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MERCWIY 
ION E - l l  E-1s E-14 112 M A R  llOKS PROTOTYPE ONCY. 

TABLE 2 



COMPARISMI OF TIHE TRANSFER WET- 
Status as of 1985 

EQUIPHENT 
~YSTEH/MC~HOD COVERAGE COST #Rf(laMAUCE WTES 

LF REG1 W A  3kS 1 us Automat ic, 1 l r  Code 
1ORAH-C llORTH HLn ISPHERE l k $  10011s-2ur * M-l 

l0kS 1OOns * A u-t lc 

m ~ s  ~YZR IM 4 k  5Oue A u t o u t l c .  C o d .  

TRANS I T VORLDUIDE I l k $  1 0 - 2 5 ~ 8  A u t o l a  Ic. Codc 

GPs UORWlM 25kS 1 Ons 4 u t a u t  l c ,  Code 

COnnUnlCAT loll M l HT-Pal UT l o o k $  I n s  T w  way, T r a n s m i t  
SATELL I T €  

Excluding skyvavs and over land patha. 

(FRIX' CCIR  REPORT 7/1i3-E ;RE;)('T.T .;53-5> 

RUTOMRTIC DRTR SERVICE FOR P T T I  USERS: -- 

I.TELEPHONE 300,  1200 RND 2408 BRUD 
EVEN PCIR I TY . FULL WPLEX 

BELL COHP*TIBLE 388412W D W I  . . . . . . . . . . 292-653-1879 

C C I T 7  Y .21  3- WlUD . . . . . . . . . . . . . . . . . . 2Q2-663-1895 

CCYTT  V.22 AH) V . 2 2  b i r  l l 2 1 1 ~ 2 4 M  Baud) . . . . . . . . . . . 282-653-1783 

2 .General E l e c t r i c  HRRK I 1 1  Information System 
Catalo R C 2 8  FOR TIMING DFITFI EXCHANGE 
UORLDVVDE. 
COHICICT H ~ v ~ l l r  F. Mithington, Cod* T S ,  U.S.  Naval Obsrrvr torv  Ydshlngtor*. DC. 38398 



Link 

[XI Station equipped with GPS receivers 

Clock IransportatiM .- -- - -. LORAN-C 
e......... .. Television 

me. m e  m* EUROPE 
\ .;y; .......a - .asu I -. - f l  T ~ . w X -  - - A z t W  ZIPE ""*".--..oMH ........ 
,I '\ 

\ 
-*-...... 

*AOS 
ON f ' 

\ ' 
\ BEV ORB 

DHI PKNM 
FTZ PTCH 

NPL STA 
I OFM 

NORTH 
AMERICA 

lHRd 
a 

(NBSj* .. ,# jUSNO] 
*' *,.' 

A P L ~  

AFRICA 

NPRF 

SOUTH 
AMERICA .: ..OMBA 

#'IOWA - 

IITERIIATIOCW. COORDINATION: MJOR LINKS 

. 

AND 

Time service 

O LORAN - C station 

@KJm ASIA 
1 

9 9 7 0 . ~ # L  
9 9 9 7 0 . Y  

I 
I 

\ 
\ 
-1- 

ILOM CSAO 
HRLM NIM 
TL SO 

. 4 ATC 

* ' *  MML 

TAI 1985 

TABLE 5 



T M  FOLL(HIfM 1s h TE5T COWPUlAllON FOR NI IDEAL CLOCW u l $ ~  pmt H I ~ E  
FREOVEHCY UOlSE (K EXllCfLY I p a r t  i n  t o  t h e  13th FROM TO 
T M  AUEMBE FAEWEIlCY IS ASSUIIED TO BE EXACI. 

DATA Rf1)tlt:f.D A I  ( H T ) :  f i : ; . ' i  AH NED., b NUV.. i Y B S  

S T  AW I DATE R H D  VAI-UL O . Q 0 0 .  U 
AVLRltGL VACIIF : -5 

LNU b A l l  AND VALUE 166.71 .7 

116 DAYS O F  DATh. B t G L H  HJD 0 .  l6b LHD NJD 
Xi. VALUES I N  E - iS  

T'UO SAHfLt SIGMA FOR i HOllRS I S  10U. 4 U I T H  4000 DATA P O I N I S  AVfi1I.ABI.E 
TYO SAHPLE SIGMA FOR 2 HWRS I S  69.7 Y ITH  2000  DATA POINTS AVAILABLE 
THO SAHPLE SIGMA FOR 4 HWRS I S  4 3 . 6  U I T H  999 DIITA P U I H T S  ClVAlLABLE 
T Y O S l l H P L E  S I C W F O R  B HOURS I S  35 .2  UITH 4 Y 9  DATA P O I N l S  AVAILABLE 
TWO SllHPl-E S IGMA FOR i b  H W R S  I S  2 4 . 6  U I T H  249 DATA PIDINTS f iVAI iAB1.E 
TYO SAnPLE SIGMll F@R 32 H W A S  IS 13.2 UI lKH 124 DATA POINTS AVAILABLE 
T W I  SAMPLE S I G M  FOR 64  HWRS I S  1 3 . 4  U I T l l  6 L  DATA P O I N T S  A V M L A B L E  
T Y O S A H P L E S I G M F O R  1 2 8 H O U R S I S  6 . 3  Y I l H  S O D b T A P O I N t S C l V l l I L A B L E  
T U O S A M P L E S I G M F O R 2 5 6 H O U R S I S  b . i  UITH i 4 D A T A P O l N T S A V A I L k B L E  
TUUSAHPLESIGHAFOR512HOURS I S  3 . 2  U ITH  

FIGURE 1. TDUV CLOCK 



QUESTIONS AND ANSWERS 

RONALD BEARD, U.S. N A V Y  R E S E A R C H  LABORATORY: 
We p e r i o d i c a l l y  h e a r  t h a t  we h a v e  r e a c h e d  t h e  p e n u l t i m a t e  i n  p r e c i s e  t i m i n g  and 
i n  s y s t e m s  t h a t  r e q u i r e  p r e c i s e  t i m i n g .  Do y o u  t h i n k  t h a t  t h i s  t r e n d  w i l l  
c o n t i n u e  i n  t h e  f u t u r e ?  

MR. WINKLER: 
One h a s  t o  c o n s i d e r  t w o  t h i n g s :  n u m b e r  o n e ,  we a r e  e v i d e n t l y  v e r y  c l o s e  t o  
f u n d a m e n t a l  limits i n  p r o p a g a t i o n  d e l a y .  I q u e s t i o n  t h a t  s y s t e m s  w i l l  n o t  b e  a b l e  
t o  m a i n t a i n  g l o b a l  s y n c h r o n i z a t i o n  t o ,  l e t s  s a y ,  t e n  p i c o s e c o n d s  o r  o n e  
p i c o s e c o n d .  T h e r e  a r e  c e r t a i n  limits. J u s t  t h e  n o i s e  d u e  t o  t h e  s i g n a l  g o i n g  
t h r o u g h  t h e  a t m o s p h e r e ,  f o r  i n s t a n c e ,  t h e  t r o p o s p h e r e  c o n s i s t s  of  b u b b l e s  on t h e  
o r d e r  o f  a f e w  c e n t i m e t e r s ,  a s  t h e s e  b u b b l e s  o f  d i f f e r e n t  d e n s i t y  m o v e ,  t h e y  
g e n e r a t e  n o i s e .  T h e  p r o p a g a t i o n  d e l a y  w i l l  f l u c t u a t e .  T h e r e f o r e ,  t h e r e  a r e  
l i m i t s .  Where, h o w e v e r ,  t h e  n e e d  f o r  b e t t e r  c l o c k s  c o n t i n u e s  is t h a t  t h e  b e t t e r  
o u r  c l o c k s  a r e ,  t h e  m o r e  i n d e p e n d e n c e  we w i l l  h a v e  i n  o u r  s t a t i o n s .  If we c a n  
h a v e  c l o c k s  w h i c h  a r e  r e l i a b l y  s t a b l e  t o  w i t h i n  a p a r t  i n  t e n  t o  t h e  f i f t e e n ,  a s  
c o m p a r i s o n  w i t h  p r e s e n t  o p e r a t i o n  a t  a p a r t  i n  t e n  t o  t h e  t h i r t e e n ,  t h a t  w i l l  
mean t h a t  we can e x t e n d  i n d e p e n d e n c e  t h a t  much f a r t h e r  o u t  i n t o  t h e  f u t u r e ,  o r  
r e d u c e  t h e  f r e q u e n c y  o f  c a l i b r a t i o n .  S o  t h e r e  i s  a  g r e a t  b e n e f i t  i n  t h e  c o n -  
t i n u i n g  d e v e l o p m e n t  o f  c l o c k s ,  b u t  most  o f  t h e  e m p h a s i s  h e r e  w i l l  h a v e  t o  do  w i t h  
r e l i a b i l i t y ,  w i t h  l o n g  term p e r f o r m a n c e ,  w i t h  f reedom f r o m  s y s t e m a t i c  c h a n g e s ,  
and I r e p e a t  r e l i a b i l i t y .  T h a t  h a s  been  t h e  m a j o r  p r o b l e m  i n  s y s t e m  a p p l i c a t i o n s .  


